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a b s t r a c t 

Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain struc- 

tures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide 

scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently 

shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in 

propagating the labelmaps from a set of atlases to the anatomy of a target image using image regis- 

tration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target 

image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical 

step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local 

patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose 

a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the 

structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, 

explicitly modeling the relationship between local image appearances and segmentation errors produced 

by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation 

errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps 

that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is 

evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Chal- 

lenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed 

label fusion framework achieves superior performance to state-of-the-art approaches in the majority of 

the evaluated brain structures and shows more robustness to registration errors. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Brain segmentation from magnetic resonance imaging (MRI)

is an important preprocessing step for many neuroimaging stud-

ies, e.g., volumetry, cortical thickness, etc . For this task, automatic

methods are desirable over manual segmentation since the latter

is very time-consuming and subject to inter- and intra-rater vari-

ability. Although good outcomes can be achieved for the segmena-

tion of the main tissues based only on image intensities ( Leemput
∗ Corresponding author. 

E-mail address: oualid.benkarim@upf.edu (O.M. Benkarim). 
1 Data used in preparation of this article were obtained from the Alzheimers 
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port. A complete listing of ADNI investigators can be found at: http://adni.loni.usc. 

edu/wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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t al., 1999; Ashburner and Friston, 2005; Shattuck et al., 2001 ),

egmentation of anatomical structures (e.g., defined by their func-

ional properties) renders intensity information insufficient and at-

as priors become an imperative resource in order to accurately de-

ineate such structures. In this setting, single-atlas based segmen-

ation uses a single atlas that is registered to the to-be-segmented

mage and then propagates its labelmap to the target using the re-

ulting warp from the registration step. Single-atlas based segmen-

ation, however, suffers from (1) representative bias in that a single

tlas may not capture the neuroanatomical variability of the gen-

ral population, and (2) high sensitivity to registration errors since

nly one atlas is used. To address these drawbacks, multi-atlas seg-

entation (MAS) makes use of multiple atlases to segment a given

arget image ( Aljabar et al., 2009; Heckemann et al., 2006; Lötjö-

en et al., 2010 ). In this way, it better adapts to the anatomical

ariability of the population and highly mitigates the effect of reg-

stration failures in the final segmentation. 

http://dx.doi.org/10.1016/j.media.2017.08.008
http://www.ScienceDirect.com
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Indeed, MAS has recently shown to be a promising technique

or brain structural segmentation ( Iglesias and Sabuncu, 2015; San-

oma et al., 2016b ). It consists in fusing the propagated labelmaps

rom a set of training atlases to a target image. There are two main

teps: 1) image registration, where the spatial transformations are

omputed to warp the atlas labelmaps to the target image, and 2)

abel fusion, where these candidate segmentations (i.e., warped la-

elmaps) are fused into a consensus segmentation. The focus of

his paper is on improving label fusion, the second step of MAS.

abel fusion is a rather challenging problem that consists in find-

ng the optimal combination of the propagated atlas labelmaps at

ach region of the target image to obtain the best segmentation.

he most straightforward way to approach this problem is to use

ajority voting (MV) ( Rohlfing et al., 2004; Klein et al., 2005 ),

hich assigns to each target the most frequent label occurring

mong the training atlases. This method has shown superior per-

ormance over single-atlas based label propagation. However, since

ll the atlases are combined with equal weight, having atlases

oo dissimilar to the target will push the resulting segmentation

way from the true target anatomy. In order to solve this problem,

everal works have proposed more robust label fusion strategies

hat weigh each atlas vote contribution based on its similarity to

he target image (e.g., Artaechevarria et al., 2009; Sabuncu et al.,

010; Coupé et al., 2011 ). STAPLE ( Warfield et al., 2004 ) and similar

ethods use a statistical approach to label fusion. Although STA-

LE was initially conceived to globally assess the performance of

ifferent raters, many works build on STAPLE to provide spatially

arying statistical label fusion approaches for MAS. Non-Local STA-

LE ( Asman and Landman, 2013 ) and STEPS ( Cardoso et al., 2013 )

xtend STAPLE by including appearance information from the im-

ges and integrating the non-local means approach ( Buades et al.,

005 ) into the statistical framework of STAPLE. Other works tackle

abel fusion in MAS from the machine learning perspective, using

lassification-based approaches ( Powell et al., 2008; Sdika, 2015;

ikic et al., 2013 ), reconstruction-based approaches ( Zhang et al.,

012; Benkarim et al., 2014 ), or a combination of both ( Sanroma

t al., 2015; 2016a ). 

In this work, we propose a probabilistic framework with the

ollowing contributions: 

• We estimate spatially varying confidences for each training at-

las in an offline way to reduce computation burden at test time.
• We formulate our method in a probabilistic framework and ob-

tain maximum likelihood confidence parameters through dis-

criminative learning. 
• We explore different spatial pooling strategies for modeling lo-

cal segmentation errors. 
• We propose novel label-dependent features to be used together

with appearance features to estimate the confidences in the

proposed framework. 

This paper is an extension of a recently published conference

aper ( Benkarim et al., 2016 ). In this current work, we implement

ore sophisticated spatial pooling strategies to make our method

ore accurate and computationally efficient, present a more exten-

ive description of the proposed label fusion framework, evaluate

he performance of our approach in 2 brain MRI datasets, assess

he robustness of our method to registration failures by using sev-

ral registration settings (affine and 2 different non-rigid registra-

ions), provide an in-depth review of the literature and a compar-

son of our approach with the state-of-the-art, and include a thor-

ugh discussion of the results. 

The outline of the paper is as follows. Section 2 is devoted to

tate-of-the-art label fusion approaches in MAS. Section 3 presents

he details of our proposed method. In Section 4 we describe the

xperimental setting and present the results. In Section 5 we dis-
uss the advantages and limitations of our approach. Section 6 con-

ludes the paper. 

. Related work 

The selection of the label fusion strategy is a crucial step in

AS and has been extensively studied in the literature. Label

usion approaches can be grouped in 3 categories according to

he strategy used for fusing the different atlas labelmaps to pro-

uce the final segmentation: similarity-based, statistical-based and

earning-based approaches ( Iglesias and Sabuncu, 2015; González-

illà et al., 2016 ). 

.1. Similarity-based approaches 

One major trend is to assign weights (or confidences) to each

arped atlas labelmap based on the similarity of its intensity im-

ge with the target image. Label fusion with MV can be viewed

s a trivial case of these approaches with atlas labelmaps com-

ined with uniform weights. The main assumption of similarity-

ased approaches is that regions with similar intensities have

imilar labeling. Several works used this heuristic to perform la-

el fusion. Global weighted voting assigns to each registered at-

as a global weight based on its overall similarity with the tar-

et image ( Artaechevarria et al., 2009 ). This approach, however,

oes not consider the spatially varying accuracy of registration,

nd subsequently, of the confidences. Among approaches that

ackle this problem, we can find works using local ( Artaechevarria

t al., 2009; Isgum et al., 2009; Sabuncu et al., 2010 ) and non-

ocal ( Coupé et al., 2011; Rousseau et al., 2011 ) weighted vot-

ng. Local weighted voting uses one-to-one correspondences of the

tlases and the target image, which compensates for the poten-

ial misalignments by increasing the weights of the locally well-

ligned atlases (and reducing the weights of the rest). In non-

ocal weighted voting, the one-to-one correspondence constraint

s relaxed by adopting the non-local means approach proposed

n Buades et al. (2005) , offering even more flexibility to com-

ensate for registration errors. Moreover, coarsely warped atlases

re enough to achieve satisfactory results, thus leading to mod-

rate computational requirements during image registration. In

his last approach, the confidence of each atlas is measured us-

ng the most similar or all patches from a small search neighbor-

ood around a given voxel. This non-local patch-based strategy has

een widely adopted by subsequent methods. The method pro-

osed in Wang et al. (2013) , for example, searches for the most

imilar patch from each atlas and models pairwise dependencies

etween atlases to reduce the weights of correlated atlases during

abel fusion. 

In similarity-based approaches, performance is sensitive to

he choice of the similarity measure, and more importantly, im-

ge similarity does not always correlate well with atlas confi-

ence ( Sanroma et al., 2014 ). 

.2. Statistical approaches 

Another kind of weighting schemes alleviate the bias in-

uced by similarity-based label fusion by estimating atlas confi-

ences through a more direct measure of the anatomical over-

ap ( Warfield et al., 2004 ). These approaches alternate the segmen-

ation of the target anatomy and confidence estimation for each

f the competing candidate labelmaps by comparing to a consen-

us segmentation in an iterative fashion. STAPLE is the most rep-

esentative work, and defines a principled statistical framework

ased on the Expectation-Maximization (EM) algorithm to perform

uch estimation. STAPLE, however, was initially conceived to assess

he performance of different raters and its performance in MAS is
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not significantly better than MV ( Artaechevarria et al., 2009; As-

man and Landman, 2013 ). Furthermore, STAPLE does not take into

consideration the intensity information available from the images

during the confidence estimation process. Many extensions build

on STAPLE to provide statistical label fusion approaches for MAS.

Gorthi et al. (2014) proposed an approach that incorporates the

versatility of local similarity-based approaches into the estimation

of the confidences. STEPS ( Cardoso et al., 2013 ) proposes a local

ranking strategy based on image similarity to improve the confi-

dence estimation in STAPLE on a voxel-by-voxel basis. The Non-

Local STAPLE ( Asman and Landman, 2013 ) integrates the non-local

means approach ( Buades et al., 2005 ) and includes appearance in-

formation into the statistical framework of STAPLE. Nonetheless, as

pointed out earlier, using image similarity can induce a bias in the

estimation of the confidence. 

2.3. Learning-based approaches 

Learning-based methods constitute a different approach to

MAS. They attempt to learn, from a set of examples extracted from

the training atlases, a function that maps local image appearances

to the correct label. A global classifier per atlas using Random

Forest ( Breiman, 2001 ) was proposed in Morra et al. (2010) and

Zikic et al. (2013) . Compared to patch-based approaches, the use

of global classifiers further relaxes the one-to-one correspondence

constraint. However, global classifiers are usually limited in cap-

turing the complex appearance patterns associated with structural

segmentation. This can be circumvented to some extent by us-

ing region- or structure-wise classifiers ( Powell et al., 2008; Wang

et al., 2011 ), and/or the feature vectors can be augmented to in-

clude spatial information for the classifier. Voxel-wise classifiers

were also used in the literature for MAS. The work presented

in Hao et al. (2014) proposed a MAS approach to estimate the tar-

get image’s label that learns voxel-wise support vector machine

(SVM) classifiers based on the voxel’s k nearest positive and nega-

tive training samples. Sdika (2015) also used voxel-wise SVM clas-

sifiers in a single-atlas based segmentation framework. This ap-

proach can be extended to the MAS framework by learning such

classifiers in each of the atlas spaces. 

The advantage of supervised approaches to MAS is that they can

incorporate additional features (e.g., texture, shape, spatial loca-

tion, etc .) ( Hao et al., 2014; Bai et al., 2015 ), which may benefit the

classifiers. Furthermore, learning can be performed offline ( Zikic

et al., 2013; Sdika, 2015 ), reducing the computational burden of

training the classifiers for each target image. 

3. Methodology 

In this section, we provide a description of the proposed prob-

abilistic label fusion framework. Fig. 1 shows the pipeline of the

method, which is composed of two phases: 

• Training phase: for each atlas, we compute its confidence

model by maximum likelihood estimation. For this task, reg-

istration of each atlas to the spaces of the remaining training

atlases is first carried out. Then, confidence models in each at-

las space are estimated in an offline manner. We propose two

ways of estimating the confidence models: 1) a naive approach

depending only on local label statistics, and 2) a learning-based

approach modeling the relationship between local image ap-

pearances and segmentation errors. Confidence estimation in

the space of each atlas is important in order to cope with sys-

tematic segmentation errors caused by registration failures. 
• Testing phase: for a given target image, spatial confidence maps

(SCMs) are obtained after supplying the target image to the

confidence models computed in the training phase. The target’s
final segmentation is then estimated in a voxel-by-voxel basis

with the proposed framework using the SCMs in conjunction

with the atlas labelmaps. 

.1. Probabilistic label fusion 

In the MAS setting, we have a set of atlas images A along

ith their labelmaps D , where D ij ∈ D and D i j = { 1 , . . . , p } , indi-

ates which one of the p structures is present at voxel i of the

 th atlas. Now consider a novel target image T , where T i denotes

he intensity value at voxel i , we denote the to-be-estimated target

abelmap as F . 

Our proposed label fusion follows the derivation of a spatially

arying version of STAPLE proposed in Asman and Landman (2012) .

he goal is to find the target labels that maximize the following

osterior probability: 

f ( F | D , C ) = 

∏ 

i 

f ( F i | D i , C i ) = 

∏ 

i 

f ( D i | F i , C i ) f ( F i ) 

f ( D i , | C i ) 
, (1)

here D i denotes the set of atlas decisions for voxel i and C i de-

otes their respective confidences (or weights). Note that we as-

ume conditional independence in the target voxels. Further as-

uming independence among the atlas decisions, we obtain the fol-

owing expression: 

f ( F i | D i , C i ) = 

∏ 

j f 
(
D i j | F i , C i j 

)
f ( F i ) ∑ 

s ∈ { 1 , 0 } 
∏ 

j f 
(
D i j , | F i = s, C i j 

)
f ( F i = s ) 

. (2)

The binary segmentation case is considered in Eq. (2) , i.e., we

ave only two labels denoted {0, 1}. For multiple structures, a one-

ersus-rest approach can be used. 

Accordingly, the probability of the target label F i being fore-

round (i.e., label 1) is defined as: 

f ( F i = 1 | D i , C i ) = 

a i 
a i + b i 

, (3)

here 

 i = f ( F i = 1 ) 
∏ 

j 

f 
(
D i j | F i = 1 , C i j 

)
(4)

 i = f ( F i = 0 ) 
∏ 

j 

f 
(
D i j | F i = 0 , C i j 

)
. (5)

Here, we are interested in f 
(
D i j | F i = s, C i j 

)
, which is the prob-

bility of observing the decision of j th atlas on voxel i , given that

he target label is s and the atlas confidence at that voxel is C ij .

his term expresses the likelihood that the atlas and target labels

oincide, and is defined as: 

f 
(
D i j | F i = s, C i j 

)
= 

{
C i j if D i j = s 
1 − C i j otherwise. 

(6)

In the EM framework used by STAPLE-based approaches,

q. (3) corresponds to the estimation of the hidden reference seg-

entation (i.e., E-step) given the rater performance parameters or

onfidences, C ij . These confidences are then updated during the M-

tep based on the previous E-step, and this process is repeated in-

erleaving both steps until reaching convergence. The main differ-

nce of our approach with Asman and Landman (2012) lies in the

omputation of the C ij confidences in Eq. (6) , which is the central

art of our work. We propose to estimate spatially varying confi-

ences (i.e., for each voxel) in an offline manner using the atlases

n the training set instead of the iterative EM-based approach used

n Asman and Landman (2012) . 
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Fig. 1. Pipeline of the proposed label fusion approach. Training : for each atlas, the remaining atlases are registered onto the atlas space and confidence models are computed. 

Testing : given a novel to-be-segmented image, SCMs from each atlas are obtained using the confidence models. Target labels are then estimated according to the proposed 

label fusion framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.2. Confidence estimation 

Let us focus on the computation of the confidence for a single

oxel i of a single atlas j , denoted as c ≡ C ij for brevity (the same

rocedure is repeated for the rest of the voxels on the rest of at-

ases). Similarly, let us denote as d ≡ D ij the label at voxel i in the

 th atlas. We denote as f = 

{
˜ D ik , k � = j 

}
, the training set of target

bservations for the voxel i in the j th atlas composed of the regis-

ered labelmaps of the rest of atlases. This is indicated by the blue

anel in Fig. 1 . We compute the confidence at each voxel by max-

mizing the following joint likelihood: 

ˆ 
 = arg max 

c 
f ( f , d| c ) 

= arg max 
c 

∏ 

k 

f ( d| f k , c ) f ( f k | c ) , (7) 
a  
here f k ∈ f . We discard the second term in the product since

e assume that target labels are only affected by the confi-

ence parameters in the presence of an atlas. Taking the loga-

ithm and substituting the atlas likelihood term by its expression

n Eq. (6) yields: 

ˆ 
 = arg max 

c 

∑ 

k 

log f ( d| f k , c ) 

= arg max 
c 

∑ 

f k = d 
log c + 

∑ 

f k � = d 
log ( 1 − c ) . (8) 

Taking derivatives, the optimal confidence is 

 = 

n h 

n h + n m 

, (9) 

here n h and n m 

are the number of coincident target labels ( hits )

nd different tar get labels ( misses ), respectively, from the atlas la-
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bel. This defines our naive approach. When all atlases are used to

compute the confidences, this approach yields similar results to

MV. Note that Eq. (7) is the analogue of the M-step in STAPLE-

based approaches. However, we are using solely the training at-

lases and no estimation of the true hidden segmentation is con-

sidered, as opposed to Asman and Landman (2012) . 

Nevertheless, we further believe that local image appearances

provide valuable clues for estimating this confidence. Therefore,

we extend the previous naive method by substituting the constant

confidence in Eq. (6) by a more complex function informed by the

image appearances, as follows: 

f 
(
D i j | F i = s, C i j 

)
= 

{
C i j 

(
t i , a i j 

)
if D i j = s 

1 − C i j 

(
t i , a i j 

)
otherwise 

, (10)

where t i and a ij are image appearance features extracted around

voxel i from the target atlas image and the j th atlas respectively.

C i j ( ·) is a function denoting the confidence we have that the at-

las label is correct given the target and atlas image appearances

(as shown in the green panel in Fig. 1 ). By using image appear-

ances, we can effectively capture the effects of registration errors

on modeling such confidence. Again, our goal is to compute such

function as to maximize the joint probability of each atlas observa-

tion given the training set. Using a similar development as in the

naive case, we arrive at the following expression: 

ˆ C = arg max 
C 

∑ 

f k = d 
C ( t k , a ) −

∑ 

f k � = d 
C ( t k , a ) , (11)

where t k and a denote the local image appearances of the k th tar-

get training sample and atlas in the training set, respectively. 

In the testing stage, given a new target image T , it is first

warped to each of the atlases in the training set. Then, SCMs are

computed using the confidence functions of Eq. (11) based on in-

tensity information from both the target, T , and the atlases, A .

Next, SCMs and their corresponding atlas labelmaps, D , are trans-

formed back to the target space. Finally, we compute the label fu-

sion using Eq. (1) , as shown in the red panel of Fig. 1 . 

3.2.1. Training 

Expression (11) corresponds to the minimization of an empiri-

cal error subject to the constraint that the computed function must

be a probability density function. For this purpose, we consider

a learning-based approach to build voxel-wise classifiers as our

confidence estimators. Note that we segment each structure sep-

arately, thus using binary classifiers. In order to explain the proce-

dure to create the samples used to train each voxel-wise classifier,

let us assume the simple case of one-to-one correspondences. For

each training atlas (in its native space), classifiers are built for each

voxel. Consider an atlas A ∈ A in its native space and a target atlas

W ∈ A �{ A } warped to A . For the i th voxel, let a i and w i respectively

represent the patches of atlas A and the warped target atlas W ,

with corresponding labels d a 
i 

and d w 

i 
. That is, the pair: 

1. ( a i , d a 
i 
) represents the patch and label of the i th voxel in atlas

A. 

2. ( w i , d w 

i 
) represents the patch and label of the i th voxel in the

target atlas W . 

These 2 pairs are used to create a single training sample ( x i , y i )

corresponding to atlas W for the i th classifier of atlas A as follows:

• For the features, we use a patch-based approach. The feature

vector, x i , consists on the intensity difference between the atlas

patch and the patch from the target: 

x i = a i − w i . 

• The class label (i.e., the label used to train our classifiers), y i , is

built from the atlas labels (i.e., the voxel labels, d a 
i 

and d w 

i 
) and
corresponds to the segmentation error produced by the atlas

(i.e., A ) when segmenting the target (i.e., W ), and is defined as: 

y i = δ(d a i , d 
w 

i ) , 

where δ( · , · ) is the Kronecker delta function. If d a 
i 

and d w 

i 
are

equal, then y i is 1, and 0 otherwise. In other words, the class

label (or the ground truth during training) tells us if atlas A cor-

rectly segments atlas W ( y i = 1 ) or not ( y i = 0 ) at the i th voxel.

Given N training atlases in our database, in this simple case of

ne-to-one correspondences, the number of training samples used

o train the i th classifier of atlas A is N − 1 , where each sample is

uilt from atlas A and each of the remaining N − 1 warped atlases

 . Therefore, the i th classifier of atlas A attempts to learn from

ll the x i what are the patterns of intensity differences that lead

tlas A to produce correct or erroneous labels, based on the rest of

raining atlases. 

In the test stage, when a novel to-be-segmented image arrives,

t is transformed to the spaces of all training atlases. Given the

est image T warped to the space of atlas A and the patch t i of

he test image at the i th voxel. The patch difference a i - t i is fed

o the classifier, which will predict how likely is the label of atlas

 at voxel i (i.e., d a 
i 
) to be the correct label for t i . The higher the

redicted probability by the classifier, the more likely is the test

atch to have a similar label to atlas A . This is what we interpret

s confidence in our label fusion. Once this has been done for all N

raining atlases, we will have N label candidates for t i along with

heir predicted confidences. 

This is how confidences are estimated with Eq. (11) . Note that

n the naive case, according to Eq. (9) , the optimal confidence is

qual to the proportion of correct labels in the training set. We do

ot use the feature vectors x i , just generate the class labels, y i , to

ompute this confidence, which tells us how good is the label d a 
i 

f atlas A in segmenting the rest of training atlases W . 

Instead of using simple one-to-one correspondences, we adopt

wo different spatial pooling strategies to build the training set for

ach voxel-wise classifier: 1) non-local means approach in the tar-

et space and 2) non-local means approach in both atlas and target

paces. In the following we describe both approaches in detail. 

.2.2. Non-local means approach in target space 

Here we use one-to-many correspondences. Given voxel i in the

tlas space A , whose patch a i is represented as the blue box in

ig. 2 , we used its label, d a 
i 
, to segment all voxels within a neigh-

orhood window in the warped atlas W, S w 

( i ). This is illustrated in

ig. 2 as a red box in the target atlas. The features and labels for A

nd a given warped atlas W are extracted as follows: 

 j = a i − w j , ∀ j ∈ S w 

(i ) , 

 j = δ(d a i , d 
w 

j ) , ∀ j ∈ S w 

(i ) . 

The advantage of this approach is twofold: 1) there are more

amples to learn the voxel-wise classifiers than in the one-to-one

orrespondences case, and 2) confidence estimators are more ro-

ust as they are trained to take into account larger registration

rrors (i.e., all patches in the neighborhood window of W at the

 th voxel). The number of samples created to train the classifier is

(N − 1) × | S w 

(i ) | , where | · | denotes the size of the neighborhood

indow (e.g., for a 3 × 3 × 3 neighborhood window, each warped

tlas W contributes with 27 samples.) 

.2.3. Non-local means approach in target and atlas spaces 

This is an extension of the previous point to have many-to-

any correspondences. Here, instead of using a single voxel i in

he atlas space A to segment the target W , we take into consider-

tion all voxels in its neighborhood, S a ( i ) (depicted in Fig. 3 as a
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Fig. 2. Non-local means approach in target space. The blue box represents the patch around the i th voxel in the atlas space A . The red box in the target space W represents 

the window search from which we extract all patches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 3. Non-local means in both spaces. The green box represents the window search from which the best (i.e., most similar) patch is selected for each patch in the target 

atlas W (red box in target atlas). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reen box), and then use k-nearest neighbors to select the voxel

abel of the most similar atlas patch a 
ˆ k 
i 
, corresponding to a given

arget patch, (see arrow labeled best:N in Fig. 3 ). The samples cre-

ted from A and a particular target atlas W are defined as: 

 j = a 
ˆ k 
i − w j , ∀ j ∈ S w 

(i ) , 

 j = δ(d a ̂
 k 

i , d w 

j ) , ∀ j ∈ S w 

(i ) , 

ith 

ˆ k indexing the atlas patch most similar to w j : 

ˆ 
 = arg max 

k ∈ S a (i ) 
sim (a k , w j ) , 

here sim denotes a similarity measure (e.g., cosine similarity). In

his way, segmentation errors produced by atlas A are based on

ppearance information. In fact, the voxel-wise classifiers in this

ase are built upon a similarity-based approach, therefore, learning

ot only the appearance patterns that lead the current atlas A to

islabel the remaining target atlases, but also the behavior of the

imilarity measure in segmenting the target patches. Furthermore,

sing many-to-many correspondences without k -nearest neighbors

o construct the datasets for our confidences estimators will make

raining computationally expensive given that we learn voxel-wise

lassifiers. The number of samples used to train the classifiers is

he same as in the one-to-many correspondences, being the only

ifference that the atlas patch a 
ˆ k 
i 

in this case is not fixed but the

ost similar among all patches in S a ( i ) to the target patch, w j . At

est time and for the i th voxel, given a test patch t i , the most sim-

lar patch and its label from atlas A to t i are selected. The classi-

er then predicts the confidence of this label (i.e., the label corre-

ponding to the most similar patch in A ) in correctly segmenting t i 
ased on the patch difference. 

.2.4. Label-dependent feature extraction 

In patch-based approaches, the simplest way to represent lo-

al features is to use a cubic patch around the voxel of interest,
s stated in Section 3.2.1 . Here, to fully take advantage of our

earning-based confidence estimators, we propose to use additional

eatures based on the atlas labelmap. This contribution uses the la-

el patch of atlas A to extract label-dependent features from the

arped images W . As illustrated in Fig. 4 , given the label patch of

he atlas A around the i th voxel, we identify the target voxels cor-

esponding to foreground and background regions (in the case of

inary segmentation) and compute different summary statistics. Fi-

ally, the difference between foreground and background features

s calculated and the resulting features are appended to the inten-

ity patch. 

With our label-dependent features, we attempt to character-

ze the intensity distributions of the target patches according to

 given atlas label patch. In principle, it is expected that back-

round voxels would exhibit a different intensity distribution when

ompared to foreground voxels since they do belong to different

tructures. Therefore, the more accurate the atlas label patch is in

egmenting the target patches, the larger the features difference

ould be between these regions. 

. Experiments 

In this section, we present the evaluation of our proposed ap-

roach and provide a comparison of its performance with state-

f-the-art MAS methods for the segmentation of seven subcortical

rain structures: accumbens, amygdala, caudate, hippocampus, pal-

idum, putamen and thalamus proper. 

.1. Data and preprocessing 

The proposed approach was evaluated on 2 brain MRI datasets:
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Fig. 4. Label-dependent feature extraction. 
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1. MICCAI 2013 SATA Challenge dataset 2 : This dataset is com-

posed of 35 T1-weighted MR images of control subjects with

age ranging from 19 to 90 years (32.4 years old in average). The

size of the images is 256 × 256 × 287 with a spatial resolution

of 1 mm isotropic. Ground-truth segmentations are available for

all 7 subcortical structures. 

2. ADNI dataset 3 : We used a subset of 135 T1-weighted MR im-

ages (44 normal controls, 46 subjects with mild cognitive im-

pairment and 45 with Alzheimer’s disease). The age distri-

bution is: 40 between 60–70 years, 55 between 70–80 years

and 40 with more than 80 years. The size of the images

is 197 × 233 × 189 with a voxel size of 1 × 1 × 1 mm. In this

dataset, ground-truth segmentations are only available for the

hippocampi. 

Our method requires pairwise registrations since its needs to

have each atlas in the rest of the training spaces. However, to save

computational time, all images were registered to a common ref-

erence space (i.e., the MNI152 template). Pairwise mappings were

then obtained by composing the transformation of the source at-

las to the template space and the inverse transformation from the

template to the target atlas. Furthermore, for image intensity to

be consistent across atlases, all images were normalized using his-

togram matching ( Nyul et al., 20 0 0 ). 

4.2. Experimental setup 

We evaluated our method using the following configurations: 

• Naive: the naive approach, where segmentation is based only

on local label statistics (i.e., voxel-wise label errors as priors). 
• SCMNF: the SCM approach using one-to-many correspondences

with only patch intensities as features. 
• SCMWF: similar to SCMNF but including label-dependent fea-

tures. 
• SCMNF2: the SCM approach based on many-to-many corre-

spondences with only patch intensities as features. 
• SCMWF2: similar to SCMNF2 but including label-dependent

features. 

For comparison, we considered the following state-of-the-art

methods: MV, local weighted voting with inverse similarity metric

(LWV) ( Artaechevarria et al., 2009 ), STAPLE, STEPS and joint label

fusion (JOINT) ( Wang et al., 2013 ). 

The summary statistics we used as label-dependent features for

SCMWF and SCMWF2 in the experiments were: mean, maximum

and minimum intensities, and the center of mass of each region.

Regarding the classifiers used for our confidence estimators, we
2 https://masi.vuse.vanderbilt.edu/workshop2013 
3 http://adni.loni.usc.edu 

 

g  

2  
sed logistic regression. For SCMNF2 and SCMWF2, the similarity

easure used to select the best atlas patch is cosine similarity: 

os (x i , x j ) = 

x i · x j 

|| x i || · || x j || . 
No parameter tuning was performed for the experiments. We

sed the default values for all methods, except for the radius of the

atch and window search that was set to 1 (i.e., a patch and win-

ow search size of 3 × 3 × 3). For logistic regression, the penalty

arameter C was set to 1. 

For the SATA dataset a 3-fold cross-validation procedure was

sed in our evaluation strategy, and for ADNI, 35 atlases were se-

ected for training and the remaining 100 for test. The 35 train-

ng atlases were selected in order to span the space of all im-

ges using spectral clustering based on normalized correlation.

or quantitative comparison, we used the Dice similarity coeffi-

ient ( Dice, 1945 ), determined as follows: 

 (A, B ) = 

2 | A ∩ B | 
| A | + | B | , 

here A and B are the reference and automatic segmen-

ations, respectively, and the modified Hausdorff distance

MHD) ( Dubuisson and Jain, 1994 ), defined as: 

HD (S, T ) = max (d(S, T ) , d(T , S)) 

here S and T are the sets of voxels in the boundary of A and

 respectively, and d is a directed distance measure between the

rst and the second sets based on Euclidean distance. MHD is re-

orted in mm throughout the whole article. Statistical significance

s measured using the Wilcoxon signed rank test and is reported

t p < 0.05. 

Finally, in order to assess the robustness of our approach to reg-

stration failures, all experiments were replicated using three dif-

erent registrations settings: 

1. AF: Affine registration, 

2. NR1: Affine followed by a non-rigid registration at a coarse

scale using the symmetric diffeomorphic mapping (SyN) pro-

posed by Avants et al. (2008) . Non-rigid registration was done

in a multi-resolution fashion using a regular grid with control

point spacings of 8 and 4 mm, and 

3. NR2: Affine followed by a finer non-rigid registration (NR2) us-

ing SyN. Non-rigid registration was done in a multi-resolution

fashion using a regular grid with control point spacings of 8, 4,

2 and 1 mm. 

.3. Implementation and computational complexity 

Our method was implemented in Python using the logistic re-

ression Python wrapper provided by Scikit-learn ( Pedregosa et al.,

011 ) for the liblinear library ( Fan et al., 2008 ). For STAPLE and

https://masi.vuse.vanderbilt.edu/workshop2013
http://adni.loni.usc.edu
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Table 1 

Mean Dice scores (top entries) and MHD (bottom entries) per structure, averaged left and right. Results obtained using the non-rigid registration NR2. 

Bold type indicates the best segmentation performance in terms of Dice overlap or MHD. The ∗ symbol indicates statistical significance difference with 

all remaining methods, and † indicates statistical significance difference with all methods except SCMNF2 or SCMWF2. Abbreviations: accumbens (Acc), 

amygdala (Amy), caudate (Cau), hippocampus (Hip), pallidum (Pal), putamen (Put) and thalamus proper (Tha). 

SATA ADNI 

Acc Amy Cau Hip Pal Put Tha Hip 

MV 0.777 ± 0.052 0.799 ± 0.038 0.826 ± 0.096 0.831 ± 0.037 0.882 ± 0.027 0.920 ± 0.019 0.908 ± 0.026 0.767 ± 0.049 

Naive 0.779 ± 0.052 0.799 ± 0.038 0.828 ± 0.096 0.830 ± 0.037 0.886 ± 0.027 0.920 ± 0.019 0.912 ± 0.026 0.768 ± 0.049 

STAPLE 0.767 ± 0.064 0.797 ± 0.041 0.819 ± 0.103 0.828 ± 0.036 0.877 ± 0.027 0.915 ± 0.018 0.904 ± 0.027 0.768 ± 0.058 

STEPS 0.768 ± 0.075 0.797 ± 0.044 0.822 ± 0.105 0.832 ± 0.042 0.882 ± 0.029 0.919 ± 0.018 0.908 ± 0.028 0.799 ± 0.043 

LWV 0.784 ± 0.053 0.802 ± 0.037 0.863 ± 0.075 0.843 ± 0.030 0.881 ± 0.027 0.919 ± 0.018 0.914 ± 0.022 0.796 ± 0.045 

JOINT 0.799 ± 0.039 0.827 ± 0.024 0.888 ± 0.068 0.871 ± 0.021 0.888 ± 0.027 0.926 ± 0.018 ∗ 0.923 ± 0.014 0.860 ± 0.037 

SCMNF 0.792 ± 0.049 0.812 ± 0.030 0.902 ± 0.051 0.867 ± 0.016 0.885 ± 0.024 0.923 ± 0.026 0.925 ± 0.011 0.844 ± 0.035 

SCMWF 0.805 ± 0.047 0.818 ± 0.033 0.905 ± 0.049 0.871 ± 0.016 0.886 ± 0.026 0.923 ± 0.024 0.924 ± 0.010 0.850 ± 0.039 

SCMNF2 0.808 ± 0.047 0.825 ± 0.032 0.906 ± 0.042 0.872 ± 0.018 0.885 ± 0.028 0.922 ± 0.021 0.923 ± 0.013 0.853 ± 0.038 

SCMWF2 0.811 ± 0.044 ∗ 0.830 ± 0.028 0.907 ± 0.040 † 0.877 ± 0.015 ∗ 0.886 ± 0.027 0.924 ± 0.019 0.925 ± 0.011 0.866 ± 0.026 

MV 2.906 ± 0.930 2.851 ± 0.608 4.259 ± 1.455 4.876 ± 1.500 2.283 ± 0.381 2.578 ± 0.780 3.341 ± 1.066 4.119 ± 1.039 

Naive 2.912 ± 0.930 2.854 ± 0.608 4.263 ± 1.455 4.875 ± 1.500 2.285 ± 0.381 2.575 ± 0.780 3.341 ± 1.066 4.119 ± 1.039 

STAPLE 2.931 ± 0.889 2.978 ± 0.607 3.918 ± 1.477 4.840 ± 1.413 2.273 ± 0.378 2.570 ± 0.732 3.461 ± 1.277 3.924 ± 0.933 

STEPS 3.054 ± 0.976 2.804 ± 0.642 4.114 ± 1.593 4.780 ± 1.576 2.204 ± 0.442 2.406 ± 0.786 3.306 ± 1.164 3.754 ± 0.993 

LWV 2.693 ± 0.811 2.800 ± 0.637 3.817 ± 1.118 4.604 ± 1.363 2.273 ± 0.394 2.573 ± 0.757 3.172 ± 0.818 3.855 ± 0.963 

JOINT 2.683 ± 0.848 2.749 ± 0.551 4.070 ± 1.764 4.846 ± 1.569 2.347 ± 0.439 2.474 ± 0.900 3.304 ± 1.266 3.467 ± 0.868 

SCMNF 2.778 ± 0.750 3.125 ± 0.915 3.355 ± 1.042 4.964 ± 1.550 2.412 ± 0.478 2.699 ± 0.879 3.207 ± 0.866 3.850 ± 0.802 

SCMWF 2.569 ± 0.635 3.111 ± 0.968 3.155 ± 0.987 4.624 ± 1.397 2.293 ± 0.474 2.555 ± 0.844 3.102 ± 0.938 3.662 ± 0.945 

SCMNF2 2.348 ± 0.565 † 2.892 ± 0.714 3.092 ± 0.969 4.559 ± 1.539 2.207 ± 0.447 2.373 ± 0.798 2.906 ± 0.937 † 3.504 ± 0.793 

SCMWF2 2.351 ± 0.557 2.846 ± 0.668 3.075 ± 0.965 † 4.474 ± 1.333 2.239 ± 0.446 2.382 ± 0.775 2.922 ± 0.919 3.369 ± 0.744 
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TEPS, we used the implementations distributed in the NiftySeg 4 

oftware package. For JOINT, the implementation shipped with the

NTs 5 package was used. 

Experiments were executed on a PC running 64bit Ubuntu

inux 14.04 LTS with a system configuration Intel(R) Core(TM) i7-

790 CPU (3.60 GHz) × 8 with 32GB of RAM. 

Execution times required by our offline learning vary depend-

ng on the size of the structure (i.e, number of voxel-wise classi-

ers) and the use of label-dependent features. To reduce the run-

imes, learning was not performed for voxels where all the atlases

ere in consensus (i.e., same label). Training our confidence esti-

ators for the accumbens, for instance, took around 3 and 12 min

or SCMNF2 and SCMWF2, respectively. For SCMNF and SCMWF,

earning took approximately 3 and 10 min. At test time, all ver-

econfsions of our method produced segmentations for the accum-

ens in less than 2 s, similarly to the rest of the methods, except

OINT that took around 10 s. For one of the largest structures, the

ippocampus in the ADNI dataset, segmentation took around 4 s

or SCMNF, 6 s for SCMNF2, and 12–15 s for SCMWF and SCMWF2.

or MV, the Naive approach and STAPLE, segmentation took around

 s. Segmentation times for STEPS and LWV were less than 5 s and

or JOINT took around 20 s. 

.4. Results 

Table 1 shows the average Dice overlap per structure (in both

rain MRI databases) achieved by each of the approaches consid-

red in the experiments using NR2 registration (i.e., finer non-

igid registration), with which all methods provided the best seg-

entations. Per structure performance results for AF and NR1 reg-

strations are included in the supplementary material. The per-

ormance of our Naive approach in terms of both Dice overlap

nd MHD is similar to MV. In fact, when all atlas labelmaps are

sed to compute the constant confidence in Eq. (6) , it is equiv-

lent to MV, being the additional transformations between atlas

paces the only difference. We should expect higher segmentation
4 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg 
5 https://stnava.github.io/ANTs 

m  

l  

m  

r  
esults when using pairwise registration, because, in the conducted

xperiments, the image to-be-segmented was only registered to

he common space. STAPLE did not show superior performance

ver our Naive approach and MV in this registration setting. The

ther STAPLE-based approach used in this comparison (i.e., STEPS)

ielded slightly better results than the aforementioned methods,

specially in the hippocampi from the ADNI dataset. Nonetheless,

his improvement was not consistent since STAPLE provided lower

HD for the amygdala, caudate and thalamus proper when using

R2 registration. Furthermore, STEPS was outperformed by LWV in

he segmentation results of all structures except the pallidum and

he hippocampus from ADNI. 

With the exception of STEPS in the SATA dataset and LWV in

he ADNI dataset, we can observe a clear dichotomy in perfor-

ance across all structures, as reported in Table 1 , between ap-

roaches ignoring image intensity (i.e., MV, Naive and STAPLE) and

he rest of methods using appearance information. We can already

ee a quantitative increase in Dice overlap and a decrease in MHD

ith LWV and STEPS. However, JOINT and the four versions of our

pproach provided the most accurate segmentations, with statisti-

ally significant improvement in all structures over MV, Naive, STA-

LE and STEPS. 

Comparing the different intensity-based configurations of our

pproach, SCMNF outperformed LWV and STEPS, but the con-

iderable boost in performance was due to the inclusion of the

abel-dependent features in SCMWF, which reached an overall Dice

core and MHD comparable to JOINT (see Table 2 ). Still, when

dopting the many-to-many correspondences to learn the confi-

ence estimators, segmentation results with our novel approaches

i.e., SCMNF2 and SCMWF2) were better than their original ana-

ogue versions. In fact, SCMNF2 produced similar Dice overlaps

nd MHD to SCMWF without using label-dependent features. In

CMWF2, the inclusion of these, has further improved the seg-

entation results in all structures according to Dice overlap, as

hown in Table 1 . In terms of MHD, SCMWF2 was outperformed

y SCMNF2 in the accumbens, pallidum, putamen and thala-

us proper, though the differences were minuscule. Dice over-

aps achieved by SCMWF2 were statistically higher than the rest of

ethods in the accumbens, and hippocampus, and in the caudate

esults were statistically significant except for SCMNF2. For MHD,

http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
https://stnava.github.io/ANTs
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Table 2 

Overall mean Dice scores (top entries) and MHD (bottom entries) per database for each registration setting. Bold type 

indicates the best segmentation performance in terms of Dice overlap or MHD. The ∗ symbol indicates statistical signif- 

icance difference with all remaining methods, and † indicates statistical significance difference with all methods except 

SCMNF2. 

SATA ADNI 

AF NR1 NR2 AF NR1 NR2 

MV 0.737 ± 0.083 0.808 ± 0.056 0.849 ± 0.042 0.635 ± 0.068 0.693 ± 0.055 0.767 ± 0.049 

Naive 0.737 ± 0.083 0.808 ± 0.056 0.850 ± 0.042 0.632 ± 0.068 0.694 ± 0.055 0.768 ± 0.049 

STAPLE 0.738 ± 0.084 0.815 ± 0.062 0.844 ± 0.045 0.670 ± 0.072 0.711 ± 0.065 0.768 ± 0.058 

STEPS 0.746 ± 0.086 0.827 ± 0.033 0.847 ± 0.049 0.733 ± 0.058 0.763 ± 0.048 0.799 ± 0.043 

LWV 0.767 ± 0.078 0.847 ± 0.047 0.858 ± 0.037 0.710 ± 0.065 0.748 ± 0.051 0.796 ± 0.045 

JOINT 0.855 ± 0.046 0.872 ± 0.034 0.875 ± 0.030 0.835 ± 0.043 0.853 ± 0.031 0.860 ± 0.037 

SCMNF 0.844 ± 0.048 0.866 ± 0.032 0.872 ± 0.030 0.811 ± 0.039 0.833 ± 0.034 0.844 ± 0.035 

SCMWF 0.849 ± 0.046 0.869 ± 0.030 0.876 ± 0.029 0.818 ± 0.040 0.838 ± 0.037 0.850 ± 0.039 

SCMNF2 0.857 ± 0.042 0.871 ± 0.030 0.877 ± 0.028 0.832 ± 0.039 0.848 ± 0.037 0.853 ± 0.038 

SCMWF2 0.865 ± 0.037 ∗ 0.874 ± 0.029 0.880 ± 0.026 0.843 ± 0.038 ∗ 0.856 ± 0.036 0.866 ± 0.026 

MV 4.286 ± 1.070 3.634 ± 1.057 3.299 ± 0.960 5.494 ± 1.289 4.730 ± 1.095 4.119 ± 1.039 

Naive 4.287 ± 1.070 3.635 ± 1.057 3.301 ± 0.960 5.493 ± 1.289 4.730 ± 1.095 4.119 ± 1.039 

STAPLE 4.221 ± 1.037 3.496 ± 1.123 3.282 ± 0.968 4.872 ± 1.017 4.331 ± 0.871 3.924 ± 0.933 

STEPS 3.930 ± 1.047 3.610 ± 1.043 3.238 ± 1.026 4.527 ± 1.254 4.031 ± 1.039 3.754 ± 0.993 

LWV 3.938 ± 1.044 3.391 ± 0.904 3.133 ± 0.842 4.778 ± 1.154 4.250 ± 0.974 3.855 ± 0.963 

JOINT 3.560 ± 1.215 3.279 ± 1.135 3.210 ± 1.048 4.122 ± 1.019 3.682 ± 1.065 3.467 ± 0.868 

SCMNF 3.660 ± 1.053 3.317 ± 0.906 3.220 ± 0.926 4.445 ± 0.931 4.088 ± 0.857 3.850 ± 0.802 

SCMWF 3.621 ± 1.095 3.213 ± 0.955 3.058 ± 0.892 4.487 ± 1.069 3.995 ± 0.976 3.662 ± 0.945 

SCMNF2 3.382 ± 1.040 3.001 ± 0.878 2.911 ± 0.853 4.026 ± 0.894 3.640 ± 0.821 3.504 ± 0.793 

SCMWF2 3.312 ± 1.011 † 2.966 ± 0.857 2.898 ± 0.809 † 3.728 ± 0.850 ∗ 3.605 ± 0.839 † 3.369 ± 0.744 

Fig. 5. Sagittal view and 3D rendering of right hippocampus segmentations for a randomly chosen image from the database. Green and red depict manual and automatic 

segmentations respectively. Overlap between automatic segmentation and ground truth is shown in blue. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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SCMWF2 was statistically superior to all methods with the excep-

tion of SCMNF2 in the caudate. In the accumbens and thalamus

proper, MHD provided by SCMNF2 were statistically lower than all

methods except SCMWF2. Fig. 5 shows an example of automatic

segmentations for all the different approaches. 

Table 2 summarizes the global performance of the tested meth-

ods for all three registrations settings. In terms of overall mean

Dice overlap for NR2 registration, our Naive approach (0.850) and

MV (0.849) outperformed STAPLE (0.844), while it offered a slight

improvement in MHD (3.299, 3.301, and 3.282 mm for MV, Naive

and STAPLE). Still, with AF and NR1 registrations, STAPLE segmen-

tations were better according to the evaluation measures. In STEPS,

the benefit of using intensity information to drive label fusion was

manifested in a superior performance over STAPLE for all regis-

tration settings with an 0.8%, 1.2% and 0.3% improvement in Dice
verlap for AF, NR1 and NR2 registrations respectively. Further-

ore, STEPS also outperformed LWV in the segmentation of the

ippocampi from ADNI, although LWV segmentations in the SATA

ataset were better than segmentations from STEPS for all regis-

rations (except in MHD for the AF registration). 

Regardless of the registration setting, we have to emphasize

he results of four methods: JOINT, SCMWF, SCMNF2 and SCMWF2.

hey all produced very robust segmentations, although with some

istinctions. For the NR2 registration, as illustrated in Table 1 ,

ur SCMWF2 approach yielded the highest Dice scores with 1.2%,

.9%, 0.6% increase over JOINT in the accumbens, caudate and

ippocampus (in both datasets) respectively. JOINT outperformed

ur approaches in the pallidum and putamen, although the im-

rovement was minor (i.e., 0.2% in both structures). Regarding

HD, JOINT produced the lowest values only for the amygdala
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around 0.1 mm lower), whereas our approaches (i.e., SCMNF2, and

CMWF2) achieved the lowest distances in all remaining struc-

ures. The largest difference in MHD occurred in the caudate, with

pproximately 1 mm improvement of SCMWF2 over JOINT. Overall,

CMWF2 showed the best performance for all registration settings,

s shown in Table 2 . SCMWF2 was statistically superior to JOINT

hen using the AF registration setting in both Dice and MHD,

nd only in MHD when using NR2 for SATA and NR1 for ADNI.

ost noteworthy is that when using coarse registrations, such as

F, Dice scores of SCMWF2 were 1% and 0.8% superior to JOINT

n SATA and ADNI databases respectively. While when using finer

egistrations, as is the case of NR2, the improvement reduced to

.5% and 0.6%. This demonstrates that our approach is more robust

gainst registration failures when compared to the rest of methods.

o better illustrate the robustness of our approach, Fig. 6 displays

oxplots of Dice and MHD for each structure separately and each

egistration setting, comparing SCMWF2 and JOINT. As we can ob-

erve, the more accurate the registration, the better the segmenta-

ions, and generally, the lower the performance gap between both

pproaches. 

. Discussion 

Our approach relies on the assumption that systematic segmen-

ation errors caused by registration failures are atlas-dependent,

nd therefore can be diminished if the appearance patterns that

ead to such errors are learned in each atlas space, taking into con-

ideration the registration model. In what follows, we present a

ethodological comparison with the state of the art, and discuss

he strengths and weaknesses of the proposed approach. 

.1. Learning from segmentation errors 

There is a few number of works in the MAS literature that ap-

roach label fusion considering segmentation errors. The concepts

f atlas accuracy map proposed in Sdika (2010) and reliability map

roposed in Wan et al. (2008) were computed by co-registering

he training atlases. However, both approaches ignored intensity

nformation. Moreover, Wan et al. (2008) performed label fusion

nly for voxels where the corresponding confidence was superior

o a predefined threshold, leaving unlabeled the rest of ambigu-

us voxels. The main drawback of these approaches is that these

aps are static and may incur poor generalization if the target

mages are considerably different from the atlases in the training

et. The risk of overffiting is also present when using offline learn-

ng ( Iglesias and Sabuncu, 2015 ). Nonetheless, our confidence esti-

ators do take into account the target patch appearance to com-

ute the local confidences, and in the SCMNF2 and SCMWF2 ver-

ions we further select the most similar patch from the training

tlases prior to feeding the difference between the atlas and target

atches to the confidence estimator. 

Supervised learning segmentation approaches existing in the

iterature ( Hao et al., 2014; Bai et al., 2015; Sdika, 2015 ) learn di-

ectly from the labels, gathering the patches from the different at-

ases to train their classifiers. To the best of our knowledge, the

ethod proposed by Wang et al. (2011) is the only work that

hares similarities with our approach in that both methods learn

rom segmentation errors instead of labels. However, the wrapper

ethod learns the disagreements between the segmentation pro-

uced by a particular host method and the ground truth segmen-

ation in the space of the target images. Whereas in our case, we

earn local confidence parameters for each atlas individually as part

f a probabilistic label fusion framework. 
.2. The benefit of intensity in segmentation accuracy 

As already shown in Section 4.4 , incorporating intensity infor-

ation in the label fusion process grants superior performance

ith regard to the rest of methods (e.g., MV and STAPLE). This

s further emphasized by the substantial performance gain of our

CM-based approaches over the Naive method. Nevertheless, using

olely intensity-based similarity, without accounting for other fac-

ors, is not enough to provide the best segmentations, as illustrated

y the performance gap between LWV and, for instance, JOINT. This

atter method uses a patch-based weighted voting approach where

eight assignment is based on modeling dependencies between

airs of atlas patches and the target image, with the purpose of

educing the confidence of correlated erroneous atlas votes. In our

pproach, weight assignment accounts for the segmentation errors

roduced by each atlas after co-registering the remaining atlases.

esides, intensity samples used for training the confidence estima-

ors are augmented with label-dependent features in the case of

CMWF and SCMWF2. 

.3. Similarity-based confidence estimation 

Similarity-based approaches employ heuristic measures that 

ay not be directly related to segmentation accuracy. Yet, these

pproaches (e.g., Coupé et al., 2011 ) have demonstrated excellent

esults in MAS. Therefore, in SCMNF2 and SCMWF2, a similarity-

ased approach is used in combination with supervised learn-

ng to build the confidence estimators. In SCMNF and SCMWF, an

tlas patch had a single static label (i.e., the corresponding la-

el of the central voxel from the expert segmentation). Segmen-

ation errors were then obtained by comparing this label to the

abels of the target atlases, disregarding any clue from the in-

ensity patches. By adopting the many-to-many correspondences

cheme, we equipped the atlas with information to decide what

abel from its surrounding neighborhood corresponds to a par-

icular target patch. Strictly speaking, segmentation errors here

re based on a specific similarity measure. Hence, what our con-

dence estimators try to learn is not the segmentation errors

s known in SCMNF (and SCMWF), but the segmentation errors

roduced by an atlas through employing this specific similarity

easure. 

This may seem computationally more costly than the proce-

ure used in SCMNF since we introduce an additional intermediate

tage (i.e., k nearest neighbors). Nonetheless, k nearest neighbors

id not suppose an important overhead and learning times were

imilar as mentioned in Section 4.3 . Additionally, SCMNF2 demon-

trated the benefits of this approach by yielding segmentation re-

ults comparable to SCMWF, with SCMWF2 outperforming SCMWF

n all structures. The proposed approach uses a simple and fast

lassifier (i.e., logistic regression). In the state of the art, existing

AS approaches used SVM ( Hao et al., 2014; Bai et al., 2015; Sdika,

015 ) and random forest ( Wang et al., 2014 ) to learn their lo-

al classifiers. For example, the learning-based approach proposed

y Bai et al. (2015) used SVM with the radial basis function kernel.

hus, using a simpler model, such as logistic regression in our case,

an lead to reduced training times, especially when thousands of

ocal classifiers are to be learned. 

The choice of the classifier, however, is not straightforward and

s application dependent. Its performance may depend on several

actors including: image modalities, nature of the features, num-

er of samples, etc . Given the modularity of the proposed method,

ther supervised learning approaches can be used to learn our con-

dence estimators. Deep learning, for instance, is gaining an in-

reasing interest in medical image analysis ( Litjens et al., 2017 ).

n our case, with deep learning, we can take advantage of the 3D

ature of the image patches rather than representing the patches
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Fig. 6. Boxplots of Dice and MHD for each subcortical structure comparing SCMWF2 (orange) and JOINT (green). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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s feature vectors ( Ciresan et al., 2012; de Brébisson and Montana,

015 ). Beyond patch-based approaches, architectures such as the

-net proposed by Ronneberger et al. (2015) , and its 3D exten-

ions ( Çiçek et al., 2016 ), can also be used as global confidence es-

imators since they can take whole images as input and output a

lassification for each pixel/voxel, which permits to take into con-

ideration larger contextual information for each voxel by analyz-

ng the images at multiple scales. Although more time-consuming

han logistic regression, this is a promising line of future work. 

.4. The effect of label-dependent features 

By incorporating label-dependent features, results showed that

oth SCMWF and SCMWF2 can output segmentations simi-

ar to state-of-the-art methods for all subcortical brain struc-

ures used in our experiments. The benefits of using addi-

ional features beyond patch intensity is well demonstrated

n Asman et al. (2015) , Bai et al. (2015) , Hao et al. (2014) and

ang et al. (2011) . In Asman et al. (2015) , 1009 dimensional fea-

ure vectors were used. Similarly, high-dimensional vectors of 1003

eatures were used by Wang et al. (2011) . For voxel-wise classi-

ers, Hao et al. (2014) used feature vectors of 379 elements and

VM with l1-regularization to select the sparsest solution from all

he possibly redundant features. In Bai et al. (2015) , 260-element

amples were built from intensity, gradient and contextual fea-

ures. In our case, SCMNF and SCMNF2 used feature vectors of

nly 27 dimensions (i.e., intensity patch of 3 × 3 × 3), whereas aug-

ented feature vectors of 33 elements (i.e., 6 additional label-

ependent features) were used in SCMWF and SCMWF2. The infor-

ative power of the label-dependent features can be observed in

he considerable increase in performance of SCMWF with respect

o SCMNF. However, the boost achieved by SCMWF2 with regard to

CMNF2 is not that large, except in the segmentation of the hip-

ocampus from the ADNI dataset, with 1.3% increase in Dice and

 0.14 mm decrease in MHD approximately. This is possibly due to

he fact that we are reaching inter-rater variability is some struc-

ures (e.g., thalamus proper). Moreover, more compact segmenta-

ions were obtained by SCMNF2 than SCMWF2 for the accumbens,

allidum, putamen and thalamus proper in terms of MHD for the

R2 registration, as shown in Table 1 . 

The idea of using information from the label patch was already

sed in Wang et al. (2011) by appending to the feature vectors the

egmentation labels produced by the host method in the neighbor-

ood of each voxel. However, they just used the raw label patch as

eatures. Our label-dependent feature extraction procedure is dif-

erent from all the aforementioned approaches. Instead of prede-

ned filters, we use the atlas label patch as a mask to compute the

ifference between the features extracted from each region of the

ntensity patch. This reduced number of features seemed to pro-

ide the local classifiers with potential information to better dis-

riminate between correct and erroneous atlas patches. 

Feature extraction is computationally expensive, especially

hen using the non-local approach with voxel-wise classifiers. As

eported in Section 4.3 , offline learning took 3 min for SCMNF,

ith a runtime increase of 7 min for SCMWF when incorporating

he label-dependent features. Considering sample selection strate-

ies may turn out advantageous to decrease computational cost.

ai et al. (2015) , for instance, performed patch selection to reduce

uch computations. 

.5. The influence of outliers 

Target images that highly deviate from the anatomies in the

raining set have a negative impact in registration, giving rise to

isaligned structures (i.e., outliers). However, our approach has

roven its robustness against outliers since SCMWF2 achieved the
est segmentations with the lowest Dice and MHD standard devia-

ions for all registration settings and both SATA and ADNI datasets,

s shown in Table 2 . Moreover, the similarity-based label fusion

pproaches used in the conducted experiments (i.e., LWV and

OINT) seem to perform poorly in the segmentation of outliers, as

llustrated in Fig. 7 . This figure shows the structure with the worst

egmentations provided by all methods. The Dice scores achieved

y LWV, JOINT, SCMNF2 and SCMWF2 in segmenting this struc-

ure using AF registration are 0.150, 0.217, 0.396 and 0.417 (0.415,

.486, 0.692 and 0.701 for NR1 registration), respectively. Note that

verlaps provided by all methods when using the affine registra-

ion are below 0.5, and for NR1 registration both LWV and JOINT

ice overlaps are below 0.5. We can observe that this is a clear

ailure in registration caused by the enlarged ventricles next to

he caudate. Segmentation errors produced by the aforementioned

imilarity-based approaches are mainly due to over-segmentation

i.e., red color). Especially important is the over-segmentation pro-

uced by identifying part of the left ventricle as caudate, although

here is great difference in intensity because the ventricles have a

ower intensity range. This is further illustrated by the Dice and

HD boxplots of the caudate in Fig. 6 . Note, however, that results

hown in the boxplots do not coincide with the Dice scores of this

utlier because the boxplots were created by averaging the results

chieved for the left and right caudate. Our confidence estimators

eem to show more robustness in the presence of outlier patches.

nother clear impact of the presence of outliers in performance of

OINT can be seen in the boxplots of the thalamus proper and the

ippocampus from ADNI, notably with the affine registration. 

.6. Robustness to registration failures 

The claim of our work is that systematic segmentation errors

ue to registration can be substantially mitigated using the pro-

osed approach. Thus, we studied the effect of registration in seg-

entation results in order to asses how segmentation performance

volves from using more coarse (i.e., AF) to finer registrations

i.e., NR2). From the overall segmentation performance reported in

able 2 and boxplots in Fig. 6 , we can conclude that our method is

ore robust to registration errors. With coarse registrations, which

re more prone to failures, our approach achieved the largest per-

ormance increment compared to the rest of approaches. Therefore,

emonstrating to be robust to registration failures. Overall mean

ice scores obtained by SCMWF2 with AF registration were lower

0.865 overlap in SATA and 0.843 in ADNI) than the ones obtained

ith NR2 (0.880 in SATA and 0.866 in ADNI). The same occurs with

HD, with SCMWF2 providing larger distances (3.312 mm in SATA

nd 3.728 in ADNI) when using AF than the distances achieved

ith NR2 (2.898 mm in SATA and 3.369 in ADNI). This differ-

nce in the performance of our approach between AF and NR2,

ould be substantially reduced by taking advantage of the many-

o-many correspondences scheme and using larger patch and win-

ow search sizes, rather than the 3 × 3 × 3 size used in this work. 

.7. Limitations and future directions 

The main limitation of our approach is that confidence learning

s performed for each training atlas, which makes it computation-

lly expensive. One possible way to lessen this computational bur-

en is to restrict the learning process to the most representative

tlas spaces, for example, by clustering the atlases and only learn-

ng in the centroid spaces. To further reduce computational time,

lthough at the expense of sacrificing segmentation accuracy, clus-

ering can also be applied to learn considering groups of neigh-

oring voxels instead of using voxel-wise classifiers. On the other

and, in this work, the size of intensity patches and search neigh-

orhoods used in both target an atlas spaces was set to 3 × 3 × 3
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Fig. 7. Illustration of left caudate automatic segmentation with the lowest Dice score and largest MHD using NR1 registration. Green and red depict manual and auto- 

matic segmentations respectively. Overlap is depicted in blue. The first row shows ground truth and automatic segmentations in coronal view. The second row shows the 

corresponding 3D renderings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(i.e., radius of 1). As future work, the impact of this parameter in

segmentation accuracy can be studied. Likewise, parameter tuning

can be performed to find the best value for the penalty parameter

used in logistic regression. This parameter can be optimized in a

local manner for each of the voxel-wise classifiers or for the whole

structure. 

The methods based on the many-to-many correspondences

scheme yielded very accurate results. Still, more work is required

here to asses the effect of the similarity metric and the strategy

used to predict the label, considering only the most similar patch

or some heuristic weighting the patches contribution to the fi-

nal label. Another direction of future work is to explore different

strategies to extract our label-dependent features or even adopt a

supervised approach to learn such features rather than using fea-

ture engineering. Moreover, additional features as the ones used

in Hao et al. (2014) and Bai et al. (2015) could be considered.

Finally, a very promising direction of future work is to consider

correlations between voxels and/or the votes of the training at-

lases ( Wang et al., 2014 ). 

6. Conclusions 

Registration failures constitute a potential source of systematic

errors in MAS. In this manuscript, we have proposed a probabilis-

tic label fusion framework that takes into consideration local atlas

confidences at each point by the estimation of the so-called spatial

confidence maps. Given the nature of our approach, we have also

proposed a novel label-dependent feature extraction that provided

valuable information in the prediction of the confidences. System-

atic errors due to registration are accounted for during label fusion

since confidence learning is performed in atlas space. As opposed

to STAPLE-like approaches, this learning process is performed in

an offline manner using the available training atlases. Therefore,

computational complexity at test time is comparable to the sim-

plest approaches. Furthermore, incorporating neighborhood infor-

mation in atlas space to compute the segmentation errors rendered

our approach more robust to registration errors. Experimental re-

sults have shown that our approach yields superior performance to

state-of-the-art approaches in the segmentation of the majority of

subcortical brain structures. 
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